Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 60(32): 2463-2470, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34319067

RESUMO

The role of glutamate in excitatory neurotransmission depends on its transport into synaptic vesicles by the vesicular glutamate transporters (VGLUTs). The three VGLUT isoforms exhibit a complementary distribution in the nervous system, and the knockout of each produces severe, pleiotropic neurological effects. However, the available pharmacology lacks sensitivity and specificity, limiting the analysis of both transport mechanism and physiological role. To develop new molecular probes for the VGLUTs, we raised six mouse monoclonal antibodies to VGLUT2. All six bind to a structured region of VGLUT2, five to the luminal face, and one to the cytosolic. Two are specific to VGLUT2, whereas the other four bind to both VGLUT1 and 2; none detect VGLUT3. Antibody 8E11 recognizes an epitope spanning the three extracellular loops in the C-domain that explains the recognition of both VGLUT1 and 2 but not VGLUT3. 8E11 also inhibits both glutamate transport and the VGLUT-associated chloride conductance. Since the antibody binds outside the substrate recognition site, it acts allosterically to inhibit function, presumably by restricting conformational changes. The isoform specificity also shows that allosteric inhibition provides a mechanism to distinguish between closely related transporters.


Assuntos
Anticorpos Monoclonais/imunologia , Proteínas Vesiculares de Transporte de Glutamato/imunologia , Regulação Alostérica/imunologia , Animais , Cloretos/metabolismo , Epitopos/química , Epitopos/imunologia , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Isoformas de Proteínas/imunologia , Proteína Vesicular 1 de Transporte de Glutamato/química , Proteína Vesicular 1 de Transporte de Glutamato/imunologia , Proteína Vesicular 2 de Transporte de Glutamato/química , Proteína Vesicular 2 de Transporte de Glutamato/imunologia , Proteínas Vesiculares de Transporte de Glutamato/química , Xenopus laevis
2.
Neurobiol Dis ; 60: 89-107, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23969239

RESUMO

Motor slowing, forebrain white matter loss, and striatal shrinkage have been reported in premanifest Huntington's disease (HD) prior to overt striatal neuron loss. We carried out detailed LM and EM studies in a genetically precise HD mimic, heterozygous Q140 HD knock-in mice, to examine the possibility that loss of corticostriatal and thalamostriatal terminals prior to striatal neuron loss underlies these premanifest HD abnormalities. In our studies, we used VGLUT1 and VGLUT2 immunolabeling to detect corticostriatal and thalamostriatal (respectively) terminals in dorsolateral (motor) striatum over the first year of life, prior to striatal projection neuron pathology. VGLUT1+ axospinous corticostriatal terminals represented about 55% of all excitatory terminals in striatum, and VGLUT2+ axospinous thalamostriatal terminals represented about 35%, with VGLUT1+ and VGLUT2+ axodendritic terminals accounting for the remainder. In Q140 mice, a significant 40% shortfall in VGLUT2+ axodendritic thalamostriatal terminals and a 20% shortfall in axospinous thalamostriatal terminals were already observed at 1 month of age, but VGLUT1+ terminals were normal in abundance. The 20% deficiency in VGLUT2+ thalamostriatal axospinous terminals persisted at 4 and 12 months in Q140 mice, and an additional 30% loss of VGLUT1+ corticostriatal terminals was observed at 12 months. The early and persistent deficiency in thalamostriatal axospinous terminals in Q140 mice may reflect a development defect, and the impoverishment of this excitatory drive to striatum may help explain early motor defects in Q140 mice and in premanifest HD. The loss of corticostriatal terminals at 1 year in Q140 mice is consistent with prior evidence from other mouse models of corticostriatal disconnection early during progression, and can explain both the measurable bradykinesia and striatal white matter loss in late premanifest HD.


Assuntos
Córtex Cerebral/ultraestrutura , Corpo Estriado/ultraestrutura , Doença de Huntington/patologia , Terminações Pré-Sinápticas/ultraestrutura , Tálamo/ultraestrutura , Animais , Técnicas de Introdução de Genes , Camundongos , Camundongos Mutantes , Neurônios/ultraestrutura , Fatores de Tempo , Proteína Vesicular 1 de Transporte de Glutamato/análise , Proteína Vesicular 1 de Transporte de Glutamato/imunologia , Proteína Vesicular 2 de Transporte de Glutamato/análise , Proteína Vesicular 2 de Transporte de Glutamato/imunologia
3.
Brain Res ; 1325: 19-27, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20170645

RESUMO

Thermoregulatory neurons in the preoptic area of the anterior hypothalamus (POA) form synaptic networks, which affect responses that regulate body temperature. To characterize these pathways of activation, projections to effector control areas, like the dorsomedial hypothalamus (DMH), require labeling in live tissue slices. Traditional fluorescent dyes label axon terminals near an injection site, but unfortunately, also that of nearby fibers of passage. Here, we describe a novel methodology for retrograde labeling of neurons in vitro, which will allow for further electrophysiological recording. To determine if POA neurons project to the DMH, we have used nanometer-sized, gold nanoprobes, which provide for specific neuronal entry, via synapses in close proximity to the injection site. Upon neuronal entry, these nanoprobe complexes diffuse to the soma, where they are readily visualized and quantified. We found that conjugation of these gold nanoprobes with VGLUT-2 antibodies and polyethyleneimine (PEI) facilitates neuronal entry and a high level of labeling efficacy. This novel method, adapted from emerging cancer therapy technologies, is highly specific for determining axon terminal projections within particular neuronal populations, while maintaining neuronal viability for targeted live cell electrophysiological recording.


Assuntos
Compostos de Ouro , Hipotálamo/fisiologia , Nanopartículas Metálicas , Neurônios/fisiologia , Área Pré-Óptica/fisiologia , Animais , Anticorpos/metabolismo , Eletrofisiologia/instrumentação , Eletrofisiologia/métodos , Hipotálamo/citologia , Técnicas In Vitro , Masculino , Nanotecnologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Marcadores do Trato Nervoso , Neurônios/citologia , Polietilenoimina/metabolismo , Área Pré-Óptica/citologia , Ratos , Ratos Sprague-Dawley , Sinapses/fisiologia , Proteína Vesicular 2 de Transporte de Glutamato/imunologia , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...